

Targeting Mitigation Benefits in Agriculture with the EX-Ante Carbon-balance Tool

Institut de recherche pour le développement

Quantifying Impacts for Mitigation, Adaptation and **Agroecological Performance**

Martial Bernoux, Uwe Grewer, Louis Bockel

Context and problem statement

Agriculture is ...

the source of 10-12 % of global GHG emissions

... a cost effective sector for important contributions to **GHG** mitigation

Agricultural production systems provide at the same time multiple outcomes agroecological of performance, including the capacity to be resilient to weather variations and a changing climate. Also they determine the amount of net greenhouse gas (GHG) emissions or mitigation that is associated with production practices

Priority actions for mitigation in agriculture and their co-benefits

Many of the technical options for mitigation in	Key mitigation actions and their co-benefits		
agriculture are readily available and could be deployed immediately.	Agriculture adaptation targets	Multi objective practices	Agriculture mitigation targets
Numerous key mitigation activities provide at the same time outcomes that are central agroecological concerns.	Cropping systems resilient to drought and water stress	Land &water conservation measures Watershed rehabilitation	Increase in soils carbon
	Reduce flood recurrence and improved resilience to natural disasters		in forest and rehabilitated land
Examples are the increase of soil organic matter that benefits soil structure, water- bolding capacity and soil fertility or the	Diversify rural income and strengthen economic resilience	Payment for Environmental Services	Reduced deforestation and slash and burn practices
association of annual and perennial crops as in agroforestry systems.	Increase investments in long term soil fertility and nutrient cycling	Improved institutions for land tenure	Effective soil conservation measures
AO EX-Ante Carbon-balance Too	OI (EX-ACT)		
Start Description Land Use Crop Grassland Land Land Inputs T T	Emissions and sinks "without project" Final carbon balance EX-ACT compares scenario to a refe		compares a project to a reference
1. Description Localization 26. Major categories 7. Results 2. Land Use Change Deforestation Other Carbon Balance	Implementation phase Capitalization p	Emissions and sinks "with project" phase Time	project) scenario.

Crop production

EX-ACT is a land-based accounting system, estimating C stock changes and GHG emissions per unit of land. It account for a variety of field activities in Agriculture, Forestry and Land-Use Change.

Results are given in tCO₂-equivalent by activity. They help project designers to prioritize project components with benefits in both economic and mitigation terms.

EX-ACT uses and benefits

EX-ACT analyses have been carried out in over 50 countries and stakeholders from roughly 40 countries were trained in using the tool.

per ha & year

The EX-ACT appraisal identifies which project actions are associated to the main mitigation benefits and specifies the type of carbon pool (biomass, soil, other) and GHG which is causing this impact.

International Financial Institutions have agreed in November 2012 on a harmonized approach to projectlevel greenhouse gas accounting.

In 2014, the World Bank and the French Development Agency (AFD) selected EX-ACT as a suitable tool for Agriculture and Forestry Projects.

The quantification of soil carbon dynamics is a central agroecological variable that generates multiple co-benefits

and allows a first performance assessment of different agricultural production systems.

The EX-ACT Tool and all documentation (User Manual, Quick Guidance, cases studies ...) are freely available from the FAO website: www.fao.org/tc/exact.

